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Coordinated, purposeful movements learned with one effector
generalize to another effector, a finding that has important implica-
tions for tool use, sports, performing arts, and rehabilitation. This
occurs because the motor memory acquired through learning com-
prises representations that are effector-independent. Despite know-
ing this for decades, the neural mechanisms and substrates that are
causally associated with the encoding of effector-independent motor
memories remain poorly understood. Here we exploit intereffector
generalization, the behavioral signature of effector-independent rep-
resentations, to address this crucial gap. We first show in healthy
human participants that postlearning generalization across effectors
is principally predicted by the level of an implicit mechanism that
evolves gradually during learning to produce a temporally stable
memory. We then demonstrate that interfering with left but not right
posterior parietal cortex (PPC) using high-definition cathodal trans-
cranial direct current stimulation impedes learning mediated by this
mechanism, thus potentially preventing the encoding of effector-
independent memory components. We confirm this in our final ex-
periment in which we show that disrupting left PPC but not primary
motor cortex after learning has been allowed to occur blocks inter-
effector generalization. Collectively, our results reveal the key mech-
anism that encodes an effector-independent memory trace and
uncover a central role for the PPC in its representation. The encoding
of such motor memory components outside primary sensorimotor
regions likely underlies a parsimonious neural organization that en-
ables more efficient movement planning in the brain, independent of
the effector used to act.
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Skilled motor behavior, from a graceful ballet move to a tennis
ace, is crucially dependent on the ability to learn new

movement patterns and adapt existing ones to novel environments.
Motor learning results in the formation of a motor memory that
enables more efficient movement planning, better movement
corrections, and more robust predictions about the outcomes of
our actions. Theories have long suggested that multiple mecha-
nisms operating at different timescales drive motor learning in
humans. These range from cognitive or strategic processes that
afford rapid behavioral gains to more implicit mechanisms that
lead to slower, gradual changes in performance (1, 2). Newer work,
especially in error-driven motor adaptation, in which the motor
memory comprises internal neural representations of the physics of
the body and the environment, has also provided elegant mathe-
matical bases for these ideas (3–5).
Deeper insight into the mechanisms that drive learning and

characteristics of the motor memory can be obtained by exam-
ining how learning generalizes to untrained conditions, a prin-
ciple that applies to other memory systems as well (6, 7). In
humans, there is longstanding evidence that learning movements
with one effector generalizes to other effectors (8–13). This oc-
curs because the acquired memory includes components that are
effector-independent. Despite the clear phenomenological dem-
onstration of intereffector generalization over many studies, and
an appreciation that it can be functionally exploited, for example

in neurorehabilitation, a principled understanding of the mecha-
nisms that encode the effector-independent representation, and its
neuroanatomical basis, has been lacking.
One theory in motor adaptation is that effector-independent

memory components are acquired via the early, fast-acting, stra-
tegic mechanisms that bring about rapid changes in motor be-
havior (10, 14). The idea is that, since a generic strategy, or a
broad “algorithm” to counter errors, is learned, it is available to
the untrained limb. However, this view can be challenged based on
other results (15, 16), rendering the mechanistic determinants of
these representations unresolved. A compelling alternative is that
such representations are encoded by slower, implicit mechanisms
that evolve gradually during learning. Since these mechanisms
bring about more robust, temporally stable updates to internal
representations of the relationship between arm motion and its
sensory consequences, and also enable long-term retention (17), it
may be more optimal to make these available to an untrained
effector. A critical prediction of this hypothesis is that general-
ization across effectors, the signature of the effector-independent
representation, should be strongly predicted by the state of the
slow rather than the fast process when both combine to drive
learning. In our first experiment, we systematically manipulate the
number of learning trials to capture different levels of these pro-
cesses and demonstrate that this is indeed the case.

Significance

Humans are sensitive to errors in their movements and learn
from them. Years of work in sensorimotor neuroscience has
shown that learning actions with one effector engenders mo-
tor memories that comprise effector-independent representa-
tions. We probe the mechanisms and neuroanatomical substrates
that are causally associated with the encoding of these memory
components. Using a combination of behavioral experiments,
computational modeling, and brain stimulation in humans, we
show that such representations are encoded via a parietal-
dependent, implicit mechanism that evolves gradually during
learning. By uncovering the computations underlying encoding of
effector-independent memories and assigning a causal role to
posterior parietal cortex, our results compel an appreciation of
the contributions of association cortices to the learning and
memory of new motor acts.
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Neuroanatomically, learning-related plasticity is known to be
widespread in the brain (18). Yet, a memory built via error-based
learning of new dynamics and visuomotor relationships is be-
lieved to be encoded chiefly in primary motor cortex or M1 (19,
20). Paradoxically, modulation of M1 activity fails to influence
the effector-independent component (21), suggesting that the
neural locus for such representations may lie outside this region.
We consider the alternative possibility that the posterior parietal
cortex (PPC) is causally engaged in the encoding and represen-
tation of such memory components. Some functional neuro-
imaging work has revealed overlapping areas of activation within
the intraparietal sulcus when different effectors are moved in a
similar manner (22, 23), implying the existence of function-based
representations that are not specifically tied to a particular ef-
fector in these areas. This appears to hold even at the neuronal
level, and is not limited to only the level of the entire region (24).
Yet, these findings have been countered with electrophysiologi-
cal (25, 26) and imaging (27) results that suggest that PPC rep-
resentations are effector-specific. Thus, based on the strength of
the current evidence, it is difficult to be certain whether effector-
independent representations are encoded in areas that include
the PPC. Besides, the imaging studies do not specify the mech-
anisms that encode such representations, and are also somewhat
limited in terms of establishing causality of the association.
A persuasive, alternate way to test the causal role of PPC in

encoding effector-independent memory components in humans
may be to exploit intereffector generalization and probe if 1)
disrupting PPC prior to learning impedes the slowly evolving
learning process (since, as our first experiment reveals, it is this
process that predicts generalization) and 2) disrupting PPC ac-
tivity postlearning blocks generalization. We pursue this line of
thought and demonstrate that high-definition cathodal transcranial
direct current stimulation (hd-tdcs) delivered near the left intra-
parietal sulcus produces these effects. Taken together, our findings
provide evidence for a critical role of the PPC in encoding effector-
independent representations of a motor memory via gradually
evolving, implicit learning mechanisms.

Results
In experiment 1 (Fig. 1A), healthy human participants made point-
to-point reaches with their left or right arm under conditions in
which the visually seen motion of the hand (represented by a
screen cursor) was rotated by 30° relative to actual hand motion.
People typically learn to modify their movement direction by

anticipating the effects of the rotation, and this learning is
achieved through the operation of more than one learning
mechanism. Critically, we varied the number of learning trials (40,
80, 160, 320) across different participant groups in order to sys-
tematically control the levels of these constituent learning
processes.

Naïve Learning Was Not Different between Arms or Learning Trial
Sets. Fig. 1B (solid lines) shows the movement (cursor) trajec-
tories of representative subjects in various groups upon initial
exposure to the rotation. As is evident, the trajectories were
similarly perturbed across all these participants. Direction errors
during early learning were not different between arms or learn-
ing trials experienced (arm, F1,56 = 0.9861, P = 0.3250, η2p =
0.017; trial set, F3,56 = 1.2874; P = 0.2877, η2p = 0.064; in-
teraction, F3,56 = 0.8276; P = 0.4843, η2p = 0.042). Learning
progressed via a reduction in errors, with trajectories becoming
straighter (Fig. 1B, dotted lines) and mean direction error re-
ducing over trials (Fig. 1C). Performance at the end of learning
also did not differ between the experimental conditions (arm,
F1,56 = 0.0778, P = 0.7813, η2p = 0.001; trial set, F3,56 = 0.0096,
P = 0.9987, η2p = 0.0005; interaction, F3,56 = 0.2508, P = 0.8605,
η2p = 0.013). Thus, naïve learning occurred in a fairly canonical
manner across the different groups.

Generalization Was Asymmetric and Scaled with Number of Learning
Trials. Postlearning generalization across effectors, the manifes-
tation of the effector-independent representation encoded via
learning, was then probed by exposing the opposite, untrained
arm to the same perturbation for 40 trials. Generalization was
assayed by comparing direction errors on these trials to those on
naïve learning trials of the same arm. Consistent with past work
(10, 13), there was no generalization from the right arm to the
left. Movement trajectories of the left arm on generalization
trials overlapped with those of its naïve learning trials (Fig. 2A),
indicating that prior right arm learning provided no benefit to
the left arm. Average direction errors were not different between
the learning and generalization blocks across learning trial sets,
confirming that generalization did not occur (block, F1,56 = 0.0196,
P = 0.8890, η2p = 0.0003; trial set, F3,56 = 0.6076, P = 0.6128, η2p =
0.031; interaction, F3,56 = 1.5716, P = 0.2064, η2p = 0.077; Fig. 2A,
bar plots, and SI Appendix, Fig. S1A).
In contrast, learning generalized quite well from the left arm

to the right. Remarkably, we found that the extent of generalization

Fig. 1. Naïve learning. (A) Participants (n = 64) performed baseline (no perturbation) trials with their left and right arms, followed by a block where they
learned, over varying numbers of trials, to adapt their movements to a 30° visuomotor rotation with one of the arms (n = 32 each). Generalization was then
tested by exposing the opposite, untrained arm to the same rotation. (B) Movement (cursor) trajectories on the first (solid lines) and last (dotted lines)
learning trials. The different colors represent the number of learning trials experienced. Trajectories were curved initially, but became straighter with
learning. Data are for representative participants. (C) Group-averaged (n = 8 per group) direction errors plotted across learning trials. Shaded regions are
SEM. Errors reduced similarly across arms and learning trial sets.
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was sensitive to the number of prior learning trials experienced.
There was a clear separation of right arm trajectories on the
learning and generalization trials, with the cursor being directed
increasingly closer to the target on generalization trials as the
number of prior learning trials increased (Fig. 2B). This was
reflected as smaller direction errors on generalization trials com-
pared to naïve (Fig. 2B, bar plots, and SI Appendix, Fig. S1B), a
pattern that was upheld in subsequent statistical tests (significant
interaction between block and learning trial set, F3,56 = 5.9127,
P = 0.0014, η2p = 0.24; post hoc tests, 40 trial set, P = 0.5139; 80
trials, P = 0.0129; 160 trials, P < 0.0001; 320 trials, P < 0.0001). A
direct comparison of errors on generalization trials showed dif-
ferences across learning trial sets (F3,28 = 9.7971, P = 0.0001, η2p =
0.51). A one-sided Dunnett’s test showed that the 320-trial group
had significantly lower errors compared to the 40-trial (P <
0.0001) and 80-trial (P = 0.0283) groups but not the 160-trial
group (P = 0.2657). Although not a direct measure of general-
ization magnitude itself, the saturating trend in the errors sug-
gested that generalization to the right arm increased as more trials
were experienced with the left arm, but leveled off with more
extended practice.

Generalization Was Predicted by the State of a Gradual Learning
Mechanism. To examine the relationship between the mecha-
nisms that drive learning and intereffector generalization, we
considered a multiprocess learning framework (3) and asked
whether the observed generalization could be predicted by the
level of the slow, implicit (but not the fast) learning process in
this model (Fig. 3A). We found that the group-averaged gener-
alization magnitude tracked neither the total learning (Fig. 3 B,
Left) nor the fast process (Fig. 3 B, Middle), but closely tracked
the growth of the slow process (Fig. 3 B, Right). There was a
remarkably strong association between the model-predicted level
of this gradually evolving mechanism and the experimentally
observed generalization amplitude (Fig. 3 C, Right). In contrast,
there was no consistent pattern in terms of generalization that
could be predicted from the state of the fast process (Fig. 3 C,
Middle) or the total learning (Fig. 3 C, Left). Critically, the re-
lationship between generalization and the slow state was just as
robust when generalization was computed on a within-participant
basis (SI Appendix, Fig. S2), and also when the fast and slow states

were simulated from model fits to data from an additional “con-
trol” experiment with a completely different perturbation protocol
(SI Appendix, Fig. S3). A multiple linear regression of the form
[generalization = β1 * xs(n) + β2 * xf(n)], where xs(n) and xf(n)
represent values of the slow and fast processes at the end of the nth

learning trial, fit the generalization data very well (r2 = 0.9925,
F2,2 = 132.4, P = 0.007). We also found a significant contribution
of the slow process (95% CI for β1 = 0.974 ± 0.42), but not the fast
process (95% CI for β2 = −0.021 ± 0.38). In sum, generalization, a
reflection of an effector-independent motor memory component,
was best predicted by the level of a gradually evolving learning
mechanism.

PPC Disruption Impeded Learning Based on the Slow Process. Next,
we probed whether disrupting parietal processing affected mem-
ory encoding by impeding the slow process. In our second ex-
periment (Fig. 4A), we delivered cathodal hd-tdcs over left or right
PPC, near the intraparietal sulcus (Fig. 4B). Cathodal stimulation
decreases the probability of spontaneous neuronal activation and
temporarily “inhibits” the activity of the region over which it is
applied (28). We observed that initial exposure to the rotation
produced effects that were not different between participants who
received real or sham stimulation (trajectories shown in solid lines
in Fig. 4 C and D); this was also confirmed statistically (F3,60 =
0.3895, P = 0.7610, η2p = 0.019). Notably, learning progressed
differently for the group that received left PPC stimulation relative
to others. While movements of participants in other groups were
directed relatively straight toward the target during the late
learning stage, trajectories of those who received left PPC stimu-
lation continued to be curved (compare dotted trajectories in Fig.
4 C and D; also see SI Appendix, Fig. S4). At the end of learning,
this group continued to show larger direction errors (F3,60 =
7.8326, P = 0.0002, η2p = 0.281; Fig. 4 C and D) than sham (P =
0.0003) as well as the right PPC stimulation groups (P = 0.0126).
Comparison of parameters of the multirate model fit to this

learning data indicated that left PPC hd-tdcs only impaired the
slow process. We found a significant group difference for the
slow learning rate Bs (H3 = 8.436, P = 0.037) but not other pa-
rameters (As, H3 = 3.152, P = 0.368; Af, H3 = 0.971, P = 0.808;
Bf, H3 = 2.451, P = 0.484). Post hoc comparisons confirmed that
Bs was significantly lower for the left PPC stimulation group

Fig. 2. Generalization. (A and B, Left) Movement (cursor) trajectories on learning (thin lines) and generalization (thick lines) trials. Trajectories on learning
and generalization trials overlapped substantially for the left arm. This was not the case for the right arm, where trajectories were directed closer to the
target on generalization trials. (Right) Bar plots show group-averaged (n = 8 per group) direction errors ± SEM on initial learning and generalization trials.
There was no difference for the left arm, but, for the right arm, errors on generalization trials became increasingly smaller as the number of learning trials
increased. ns, not significant (*P = 0.0129; **P < 0.0001).
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compared not just to participants who received sham hd-tdcs
over left PPC (P = 0.026), but also those who received real
stimulation over the right PPC (P = 0.026). Importantly, the right
PPC stimulation group did not differ from the group that re-
ceived sham stimulation over the same region (P = 0.575). Ad-
ditional permutation tests (n = 10,000) confirmed this pattern
by revealing a substantial effect of left PPC stimulation on the
slow learning rate compared to sham (P = 0.0042) as well as
right PPC stimulation (P = 0.0052) groups (Fig. 4E). Thus, left
PPC disruption resulted in an inability to learn beyond the
initial stages of exposure to the perturbation, when the slow
process began to contribute. Indeed, in a model-free analysis,
we found no group differences in average error during the first
25 learning trials (F3,60 = 2.0976, P = 0.11, η2p = 0.094; Fig. 4F),
but error on the remaining trials was significantly larger in the
left PPC hd-tdcs group (F3,60 = 7.4094, P = 0.0003, η2p =
0.2703; Fig. 4F) compared to the sham (P = 0.0004) and right
stimulation groups (P = 0.0141). This selective deficit is in line
with our recent findings in apraxic patients who had maximum
lesion overlap in inferior parietal cortex (29), and likely reflects
an inability to encode new information via the slow process
rather than a failure to compute errors that drive learning; the
latter would be expected to produce deficits during the early
learning phase as well.

PPC Stimulation after Learning Blocked Generalization across
Effectors. The results of our first two experiments suggested
that 1) motor memories built via the slow learning mechanism
are effector-independent since they strongly predict generaliza-
tion across effectors and 2) disrupting left PPC blocks the
encoding of memories built via this mechanism. A decisive test of
this scheme is that interfering with left PPC activity after learning

should disrupt generalization across effectors. We tested this in
our third experiment in which we delivered cathodal hd-tdcs over
PPC immediately after learning (Fig. 5A). We first confirmed
that there were no differences between the real and sham
stimulation groups either during the early (F1,22 = 2.1022, P =
0.1612, η2p = 0.087) or late (F1,22 = 0.6317, P = 0.4352, η2p =
0.0279) learning stages before the stimulation was delivered
(Fig. 5B). However, poststimulation, clear group differences in
generalization were evident. While significant generalization was
observed in the sham group, it was absent in participants who
received stimulation over PPC (F1,44 = 16.1066, P = 0.0002, η2p =
0.268). Direction errors on generalization trials (Fig. 5C) were
significantly larger in the PPC stimulation group (F3,40 =
20.9528, P < 0.0001, η2p = 0.611) relative to sham (P < 0.0001) as
well as additional “control” participants who received cathodal
hd-tdcs over left M1 after learning (P < 0.0001). Furthermore,
there was no difference between the sham and M1 stimulation
groups (P = 0.2153), indicating that generalization occurred
despite M1 disruption. This indicated that the lack of general-
ization in the PPC stimulation group was not due to any non-
specific effects of hd-tdcs. Interestingly, errors of the PPC
stimulation group were not different from those of another
control group that only underwent 40 trials of naïve learning (P =
0.2634). Moreover, the pattern of error reduction of the PPC hd-
tdcs participants on generalization trials was qualitatively not
different compared to this naïve group (Fig. 5D); it was as if the
PPC stimulation group was learning afresh. Thus, disrupting the
PPC (but not M1) impeded generalization, providing direct ev-
idence for its causal role in representing an effector-independent
memory trace.

Fig. 3. Generalization was best associated with the slowly evolving process of a multirate learning model. (A) The multirate model has “fast” (maroon) and
“slow” (orange) processes that are summed to yield the net output (blue) plotted here in terms of hand angle. On learning trials, a hand angle of 30° implies
that the cursor heads straight to the target, resulting in a direction error of 0. The dotted line indicates average generalization magnitude of the group that
experienced 320 learning trials. (B) Comparison between group-level generalization magnitude (colored dots) and learning curves predicted by the model. All
curves were scaled such that their value on the 320th trial matched the group-averaged generalization magnitude of the 320 learning trial group (17). Thus,
the fast learning curve was scaled up, while the net learning curve was scaled down. Likewise, the slow curve was scaled down by a very small amount to align
the values. (C) Association of the fast state, slow state, and net learning reached at the end of different learning trial sets with generalization magnitude.
There was a strong linear relationship (r2 = 0.95) between generalization magnitude and level of the slow process (Right). This association was nonlinear for
the fast process (Middle) and total learning (Left).
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Discussion
Developing motor memories through learning affords immense
benefits in motor control. Even though it has been widely ac-
knowledged that learning with one effector leads to the develop-
ment of a motor memory that comprises component representations
that are effector-independent, an understanding of how they are

encoded in the brain has remained elusive. We demonstrate that
effector-independent memory components are forged via a gradu-
ally evolving, implicit learning mechanism within areas that include
the left PPC.
Our results challenge past work that has suggested that such

representations are built via “algorithmic,” or fast, strategic

Fig. 4. Parietal hd-tdcs impairs slow process-mediated learning. (A) Baseline trials were followed by a learning block and an after-effects block. Cathodal hd-
tdcs (2 mA, 15 min) was applied after baseline trials over PPC near the intraparietal sulcus (P3 or P4 locations; P3, n = 17 real, 17 sham; P4, n = 15 real, 15
sham). (B) Simulated distribution of electric fields with the hd-tdcs cathode over P3 (Top; cortical MNI, −41,−69, 45) and P4 (Bottom; cortical MNI, 41,−69, 44).
Simulations (HD Explore; Soterix Medical) revealed an intensity of 0.167 V/m and 0.156 V/m at P3 and P4, respectively. (C and D, Left) Cursor trajectories of
representative participants receiving real or sham hd-tdcs for the straight-ahead target from the first and last bins. (Right) Group-averaged direction error for
each trial. Solid lines in these plots represent the predicted direction errors simulated using the mean values of the parameters obtained by fitting the
multirate model to each participant’s data. Inset bar plots show mean ± SEM direction error on the first and last eight learning trials. Dots in the bar plots
indicate individual participants. (E) Distribution of the test statistic (difference in mean Bs value) for 10,000 permutations of data of the indicated groups. The
vertical dotted lines represent the observed difference in means. (F) Mean ± SEM direction error during early learning (first 25 trials; Left) and remainder of
the learning block (Right). Dots represent individual participants (*P = 0.0141, **P < 0.001).
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mechanisms that contribute to motor adaptation (10, 14). This is
supported by the observation that generalization across effectors,
the behavioral manifestation of an effector-independent repre-
sentation, was most strongly predicted by the level of the gradual
but not the fast process. This is also bolstered by the finding that
generalization was absent in participants whose learning, in all
likelihood, was principally driven by the fast process (those who
trained only for 40 trials). These results suggest that the error-
sensitive fast process contributes little to the acquisition of an
effector-independent memory. This appears intuitive in that a
strategic solution developed for one effector may not necessarily
work for another. For example, countering an error with the left
arm using a strategy such as “move away from the body midline”
would exaggerate errors if this strategy is also used with the right
arm. A more optimal solution could be to form representations
that yield more robust predictions about the effects of the per-
turbation that induces the errors, which can then be accessed by
untrained effectors. This can be achieved via the slower mech-
anisms that enable the recalibration of internal motor repre-
sentations when faced with a perturbing environment. This is not
to say, however, that fast, strategic processes do not drive learning
or contribute to the encoding of motor memories. Learning has
been shown to occur even with very brief exposure to visuomotor
rotations like the one we have used; such learning, in all proba-
bility, is driven by a fast, explicit process. This kind of learning,
however, appears to subserve a latent memory that is expressed as
savings, or faster adaptation, when the same effector is reexposed
to the original learning conditions (30). It remains to be estab-
lished whether memory components encoded by this fast process
during motor adaptation are only effector-specific; our finding of
the absence of generalization when learning is driven by the fast
process (40 learning trial group) would imply so. This dissociation
could be tested in a fresh series of studies in the future.
A pertinent question is whether effector-independent memory

components can be formed simply by repeated practice rather

than the slow process per se. A couple of observations suggest
that this is unlikely to be the case. First, the magnitude of gen-
eralization appeared to saturate with extended practice. Specif-
ically, errors on generalization trials after 320 learning trials were
not substantially lower than after 160 learning trials, even though
the amount of practice doubled. This leveling off mirrored the
saturation in the slow process as the number of learning trials
increased. This should not have been the case, i.e., generalization
should have continued to increase if movement repetition pro-
moted generalization beyond levels contributed by this mecha-
nism. Second, recent work suggests that extended practice or
experience does not influence the rate of implicit learning, nor
the magnitude of aftereffects in motor adaptation (31). Rather,
repetition results in caching of stimulus–response associations
that trigger faster retrieval upon reexposure to previously learned
contexts. Thus, it appears that repetition provides no additional
benefit for implicit learning or phenomena associated with implicit
learning such as aftereffects, and, as we suggest here, generaliza-
tion to other effectors.
What is the nature of the effector-independent memory

components that facilitate intereffector generalization? In our
case, these are unlikely to be representations of muscle activation
patterns or muscle synergies acquired during learning. Rather, a
strong possibility is that these are abstract representations of the
relationship between the motion of an effector and its sensory
consequences, i.e., tacit knowledge about how the arm movement
should be directed in order to make the cursor go straight to the
displayed target in the face of the perturbation. Critically, such
representations are continuously calibrated via implicit learning
(32) and ensure that the planned and executed movement tra-
jectories are identical in visual space. This idea, however, leads to
the intriguing question of whether any new, higher-level repre-
sentation that ensures correspondence between planned and ac-
tual motion of an effector to satisfy the action goal also facilitates
generalization across effectors. We believe that this is likely to be
the case. For example, in tasks that require learning of novel
motor coordination patterns, an acquired representation of a ge-
neric temporal relationship of movements of different effectors
may best account for generalization to untrained effectors (33).
Likewise, representations of abstract visuospatial associations
during sequence learning are likely to underlie generalization of
the learned sequence to other effectors (34). The mechanism that
underpins the development and updating of these representations
could provide the gateway for such generalization.
The notion that higher-level, abstract representations act as a

scaffold for generalization also resonates with recent suggestions
made in the perceptual learning literature. Early studies con-
sidered visual perceptual learning to be specific to a trained
retinal location, which was explained using a framework in which
learning-related plasticity occurred only in early visual cortical
areas (35). However, more recent work has demonstrated gen-
eralization across locations (36), which, critically, can be accoun-
ted for by the inclusion of higher-level, location-invariant
representations in a computational architecture of perceptual
learning (37). Likewise, generalization across stimulus orientations
can been explained using a rule-based conceptual model in which
higher-order brain areas learn the rules of reweighting inputs from
early visual cortex (38). Interestingly, such representations seem to
evolve in nonretinotopic regions such as lateral intraparietal area,
as shown in tasks that require motion discrimination learning (39).
Analogous conclusions can be drawn from studies probing gen-
eralization of speech (40) and tactile perceptual learning (41).
While these studies do not examine a different effector per se, the
idea that generalization to any untrained condition is likely driven
by a broader, higher-level representation suggests that this may be
a fundamental principle across many learning systems.
Past work has emphasized that memories acquired via error-

driven learning are encoded primarily in M1 (19, 20). Branching

Fig. 5. Parietal hd-tdcs following learning blocks generalization. (A) Base-
line trials were followed by a block of rotation learning trials. Cathodal hd-tdcs
(2 mA, 15 min) was delivered after the learning block, followed by a test of
generalization to the opposite arm. (B) Direction errors across learning trials
for the real (n = 12) and sham (n = 12) PPC hd-tdcs groups. Shaded regions are
SEM. (C) Mean ± SEM direction error on generalization trials for the real and
sham PPC and real M1 (n = 12) hd-tdcs groups, shown with the mean error on
the first learning trial of a group that only underwent naïve learning (n = 8).
Dots represent individual participants. (D) Change in direction error over
generalization trials for the real PPC hd-tdcs group. Also shown is the change
in direction error during the learning block for the group that only underwent
naïve learning. Shaded regions are SEM. ns, not significant (**P < 0.0001).
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off from this line of thought, we demonstrate a role for the PPC
in the encoding of motor memories. This mirrors seminal new
results that have uncovered encoding of other forms of systems
memory in PPC (42), and more broadly, aligns with recent work
highlighting critical contributions of nonmotor regions to the
memory of motor acts (43). Our findings also lend causal support
to imaging studies that have demonstrated overlapping activity in
intraparietal regions when different effectors are moved, pre-
sumably reflecting the presence of effector-independent motor
representations (22, 23). Yet, the result that PPC causally con-
tributes to the formation of such memories should not be taken
to imply that M1 does not encode motor memories at all. There
is ample evidence, even down to the single neuron level (44), that
M1 can hold motor memories. We posit, though, that compo-
nents of motor memories encoded in M1 may be more strongly
tied to a particular effector and include, for instance, lower-level
representations of task-related muscle activity patterns or specific
motor responses. This plausible dissociation—effector indepen-
dence of PPC and effector specificity of M1 representations—
could also then explain why modulation of M1 does not affect
generalization across effectors (21), but its disruption leads to
poor retention of learning when tested with the same effector as is
used to learn (20). Indeed, some areas of PPC that show over-
lapping activity when different effectors are moved project to
effector-specific regions in M1 (24), an organization that may
provide the neurophysiological foundation for such effects.
How might the PPC participate in memory encoding? One

possibility is that the PPC computes the errors that drive learning
and memory formation. However, this is less likely in our case
because PPC disruption did not impede the error-sensitive fast
process, which in fact acts when the error is large. Additionally,
in our third experiment, there was no learning impairment dur-
ing the brief generalization period following PPC stimulation; a
compromise in error computation should potentially have pro-
duced one. This raises the possibility that computation of the
error that drives learning in our task may occur outside the PPC;
the cerebellum (45) and/or frontal areas such as premotor cortex
or even M1 (46) could be plausible candidates. A second, more
likely possibility is that the effector-independent component of
the memory is built in PPC or a network that includes PPC as a
critical substrate. This thought aligns with the putative role of the
PPC in holding more abstract action plans (47) and “functional”
memory structures (48, 49). For instance, the evolution of ge-
neric visuospatial associations during sequence learning is closely
tied to an increase in activity in the (left) inferior parietal cortex,
and, notably, this activity remains high as the sequence is
replayed with different effectors (48). Our finding that general-
ization across effectors is blocked after postlearning disruption
of areas near the inferior parietal cortex is in harmony with these
results. Such an arrangement could reflect an efficient coding
scheme in which a common neuronal population is engaged for
relatively similar movements of different effectors. The notion
that effector-independent components may be encoded within
PPC is also in line with some very interesting recent findings in
dysplasic individuals in whom the plastic evolution of memory
representations of object manipulation with the feet (due to the
loss of the arms) occurs in intraparietal areas (50). A relevant
question, though, is whether the PPC possesses the neurophysi-
ological foundations to actually encode a memory. Findings of
tuning of directional selectivity in medial intraparietal regions
following motor adaptation (51), as well as simulations in which
generalization patterns are produced by updating weights be-
tween parietal-like narrow Gaussian-tuned visual units and mo-
tor units (52), suggest that this is likely the case.
Our results also reveal a striking asymmetry in generalization

and left-laterality of the PPC contributions; these could be re-
lated effects. We suggest that this occurs not because a learning
mechanism is tied to a particular effector, but because motor

representations built through implicit learning are lateralized
largely to left brain hemisphere, independent of the effector used
to learn. Indeed, the left hemisphere in right-handers possesses a
capacity for motor learning and memory that is distinct from the
right. For instance, adaptation deficits are more common with
left than right hemisphere damage (53), and skill learning is more
enhanced after left than right hemisphere facilitation by brain
stimulation (54). Imaging studies have identified neural correlates
of sequence learning (48), real and imagined tool-use actions (55),
and well-learned gestures (56) that are left-lateralized. Relatedly,
studies in apraxic (57) and other patients (58) have shown that left
hemisphere damage, specifically around the left intraparietal sul-
cus, results in behavioral deficits that reflect loss of knowledge of
learned transitive and intransitive actions. These findings collec-
tively suggest that representations of implicitly learned, complex
actions are asymmetrically organized: they are much stronger in
the left hemisphere compared to the right. As such, the right but
not always the left arm has direct access to these representations,
which could produce the asymmetric generalization behaviorally
as and when these representations are updated. Why such a lat-
eralized system evolved in humans remains an open question, but
it is possible that, over the course of evolution, such an architec-
ture enabled the accommodation of increased motor complexity
without significant expansion of neural tissue.
In conclusion, our results provide insight into the mechanism

by which effector-independent representations of a motor memory
are encoded and provide causal evidence that this encoding occurs
in areas that include the left PPC, but not necessarily M1. The
availability of such representations in “association” regions known
to be important for higher-order aspects of movement such as
intention and decision-making (59) likely reflects the evolutionary
emergence of an efficient neural architecture. Such an organiza-
tion could facilitate more optimal movement planning in the brain
by enabling the specification of certain movement parameters
independent of the effector used to execute an action.

Materials and Methods
Participants. A total of 180 young, healthy right-handed individuals (age 18
to 27 y, 45 females) participated across various main and control experi-
ments of this study. The distribution of subjects across different groups in
the experiments is given in subsequent sections. Subjects were included if
they reported no neurological condition, cognitive impairment, or ortho-
pedic injuries. Experimental protocols were approved by the institute ethics
committee of the Indian Institute of Technology Gandhinagar, and partici-
pants gave written informed consent prior to participation.

Apparatus. Participants sat facing a large digitizing tablet and used a hand-
held stylus to make reaching movements on it. Direct vision of the hand was
blocked by means of a mirror mounted above the tablet. A start circle and
targets for the reach were displayed on an HDTV placed horizontally above
the mirror. Although direct vision of the hand was not available, feedback
about hand position was displayed on the screen by means of a cursor. The
start position, targets, and cursor were all reflected onto the mirror, and
participants looked into the mirror while moving. Cursor feedback could be
veridical or manipulated in different ways relative to actual hand motion.

Experimental Design and Task Procedure. To begin a trial, participants brought
the cursor into the start circle and were presented with the target and an
audiovisual “go” signal 500 ms later. They were instructed to make fast and
accurate movements, and received performance feedback on each trial
through a numerical score based on movement accuracy. This score was
not analyzed.

Experiment 1. Participants in experiment 1 (n = 64) performed 10-cm-long
movements from a start position to a target placed straight ahead under
continuous cursor feedback. After a few familiarization movements, par-
ticipants performed baseline trials with their left and their right arm (16
trials with each arm, counterbalanced) on which cursor and hand motion
was matched. Following baseline, participants performed learning trials on
which motion of the cursor was rotated 30° counterclockwise relative to
hand motion. Critically, participants differed in terms of the arm used to
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learn and also the number of learning trials experienced. Half the partici-
pants (n = 32) learned with their left arm, while the remaining used their
right arm to learn. Additionally, within each left or right arm group, par-
ticipants experienced either 40, 80, 160, or 320 learning trials (n = 8 each).
Following learning, all participants were exposed to the same rotation with
the opposite arm for a fixed set of 40 trials to test for generalization.

The X–Y hand position data were low-pass Butterworth-filtered with a
10-Hz cutoff frequency. Position data were differentiated to yield velocity
values. Our primary measure of interest was direction error, which was
calculated for each trial as the angle between the line joining the start circle
and the target and the line joining the start circle and the cursor position at
peak velocity. The mean baseline direction error of the corresponding arm
for each participant was subtracted from the direction error on learning
trials for that participant, and learning was quantified as a reduction in this
direction error across learning trials. Further, performance upon initial ex-
posure to the rotation and end of learning was quantified as the mean di-
rection error on the first and last four learning trials respectively.

To assess generalization, we compared the direction error on the first naïve
learning trial of an arm to that observed on the first generalization trial of
the same arm. Using only the first trial for this comparison was absolutely
critical because subsequent trials in the generalization block allow the un-
trained limb to learn, thereby contaminating the generalization measure.
Generalization was thus determined by probing, for instance, whether di-
rection errors for participants that learned naively with the right arm were
different from those of participants who used the right arm after they had
learned with the left arm. Smaller errors with the right arm on generaliza-
tion trials would indicate generalization from the left arm to the right. A
similar approach was taken for determining generalization from the right
arm to the left. Thus, our comparisons were always within the same arm and
at the same time point, yielding a more “pure” measure of generalization,
since potential confounds related to handedness or baseline performance
differences between the arms were avoided. The magnitude of generalization
for each trial set was calculated as the difference in the group-averaged di-
rection error of the naïve learning and generalization trials. Note that, while
this is a better measure of generalization, it is not a “within-participant”
measure since the same arm of different participants is compared. For com-
pleteness, we also calculated left to right arm generalization magnitude for
individual participants as: (left arm errors on naïve learning trials – right arm
errors on generalization trials)/left arm error on naïve learning trials. This was
then expressed as a percentage by multiplying by 100. Again, only the first
naïve learning and generalization trials were used in this calculation.

Computational Model. In order to understand the relationship between the
mechanisms that drive learning and the observed generalization, we con-
sidered a multiprocess learning framework in which learning is driven by a
fast, explicit process that operates in parallel with a slower implicit process,
both of which are error-sensitive (3, 5). We simulated the learning patterns
that would emerge from this framework using the following equations:

e(n) =   x(n)  +   u(n)

x(n) =   xs(n)  +   xf (n)

xs(n + 1)  =  As *   xs(n)  +   Bs *   e(n)

xf n + 1( )  =  Af *   xf n( )  +   Bf *   e n( ),
where e(n) is the error experienced on the nth trial, x(n) is the net motor
output on the nth trial, u(n) is perturbation imposed on the nth trial, xs and xf
are internal slow and fast states, As and Af are retention factors for the slow
and fast processes, and Bs and Bf are the slow and fast learning rates,
respectively.

The parameters used for the simulation were derived by fitting this model
to the trial-by-trial learning data using the fmincon function in Matlab, with
As constrained to be greater than Af, and Bs smaller than Bf. Our results
indicated that generalization occurred only from the left arm to the right,
and so only the left arm naïve learning data (n = 32) were used for model
fitting. We created 10,000 bootstrapped data samples, each as the average
of 32 random choices made from the set of 32 participants with replace-
ment, and then fit the model to these samples. Median parameter values
resulting from the fit were: As = 0.998, Af = 0.896, Bs = 0.0161, and Bf =
0.255. These values were used to simulate the slow, fast, and total learning
curves (Fig. 3A). We then investigated whether the amount of generaliza-
tion was most strongly associated with the level of the slow process, fast
process, or total learning at the end of different learning trial sets.

Additional Experiment for Model Parameter Estimation. There is no “gold
standard” perturbation protocol to obtain model parameters. To test the
robustness of the association between generalization and the underlying
learning processes, however, we performed another experiment with a
different perturbation protocol and estimated the model parameters by
fitting the multirate model to the learning data from this experiment. Our
goal was to determine whether the generalization seen in experiment 1
could be predicted by the fast or slow states or total learning derived by
fitting the model to data from a completely different experiment.

A new set of participants (n = 8) performed a block of 40 baseline
movements of 10 cm length. They were then exposed to a 30° counter-
clockwise cursor rotation for a block of 200 trials, which was followed by an
opposite (clockwise) rotation of the same magnitude for a brief set of 20
trials. Following this, participants experienced a block of 80 “error-clamp”
trials wherein the visual errors were clamped to zero by fixing the motion of
the cursor in the direction of the target regardless of the direction of hand
motion. Only the left arm was used in this task. Behaviorally, this kind of
perturbation protocol results in a phenomenon termed “spontaneous re-
covery” (3) where, on the error-clamp trials, the hand moves in a direction
that is appropriate for compensating the originally imposed, longer-duration
perturbation (counterclockwise rotation in our case). This rebound toward the
originally learned behavior reflects the effects of a lingering slow process (the
fast process gets reset to zero following the brief exposure to the counter
perturbation and does not change after that in the error clamp; however, the
slow process is slower to decay and does not reach zero in the same time).
Thus, this “A-B-error clamp” perturbation schedule allows the estimation of
the slow component independent of the faster one.

Data processing and computation of various dependent variables
remained similar to before. We again bootstrapped the data to create 10,000
samples, each as the average of 8 random selections made from the set of 8
participants with replacement, and fit the multirate learning model to them.
Median parameter values that we obtained were As = 0.998, Af = 0.887, Bs =
0.031, and Bf = 0.165. We used these parameter values to simulate the fast
and slow states as well as the net motor output. Finally, we probed whether
the generalization seen in experiment 1 was best predicted by levels of these
newly simulated slow or fast states.

Experiment 2. The results of experiment 1 indicated that generalization across
effectors was most strongly associated with the slow learning process. In
experiment 2, we probed whether disrupting the posterior parietal cortex
(PPC) would specifically impede this process. The setup and general task
conditions for experiment 2 remained similar to experiment 1. Briefly, par-
ticipants (n = 64) made reaching movements from a start position to one of
eight targets placed around the edge of an imaginary circle at a radial dis-
tance of 15 cm with either their left (n = 30) or their right arm (n = 34). After
performing 40 baseline reaches, participants were exposed to a 30° coun-
terclockwise rotation of the cursor for 160 trials, which was then followed by
an after-effects block of 120 trials. Cursor feedback was withheld for the first
40 after-effects trials, whereas, in the remaining 80 trials, the cursor was
redisplayed on the screen with its motion matched to the hand. Each target
was displayed once on each “bin” (set of eight consecutive trials) during the
baseline and learning blocks; in the after-effects block, one randomly se-
lected target was displayed twice in a bin while a different one was not
displayed. Unlike experiment 1, the opposite arm was not tested, since this
experiment was not designed to test generalization. The behavioral mea-
sure of interest continued to be direction error, which was calculated as
explained earlier. Early and late learning performance was quantified as the
mean direction error on the first and last eight learning trials (one move-
ment to each of the eight targets). Learning was characterized by a re-
duction in the (baseline un-subtracted) direction error over trials.

High-Definition Transcranial Direct Current Stimulation (hd-tdcs). In this ex-
periment (and in experiment 3), we delivered cathodal hd-tdcs over the PPC.
Cathodal, and not anodal, stimulation was used primarily for two reasons:
first, it produces more stable inhibitory effects on motor learning (60), which
was aligned with our goal of disrupting PPC processing rather than en-
hancing it. Second, anodal stimulation is known to produce more heterog-
enous behavioral effects (61, 62). We used a 4 × 1 hd-tdcs device (Soterix
Medical) with Ag/AgCl sintered ring electrodes of 1.2 cm outer diameter and
0.6 cm inner diameter. Electrodes were arranged in a ring configuration
with the cathode as the central electrode and the other four electrodes
(anodes) forming a ring around it. The area of cortex undergoing stimula-
tion is far more restricted in this configuration than the conventional two-
electrode configuration (63). It has also been shown that the current does
not spread substantially outside the stimulation area when a 4 × 1 ring
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configuration is used, with the electric field falling below 30% of the peak at
the ring perimeter (64).

For participants who used their right arm to learn, stimulation was applied
over the left PPC, while, for those who learned with their left arm, the right
PPC was stimulated. The location of the PPC was determined using the 10–20
EEG system. The P3 and P4 locations, which are in close proximity to the
intraparietal sulcus (65, 66), were chosen as the stimulation sites. The cath-
ode was placed at the P3 location for the left hemisphere stimulation par-
ticipants, which corresponded to MNI coordinates of (−52, −80, 54) on a
physical model of the ICBM-152 head and (−41, −69, 45) on the cortex (67).
The anodes were arranged in the P1, P5, CP3, and PO3 locations. For right
hemisphere stimulation, the cathode was placed at the P4 location [MNI
coordinates of (53, −80, 54) on the ICBM-152 head, (41, −69, 44) on the
cortex], while the anodes were placed at the P2, P6, CP4, and PO4 locations.
All electrodes were held in place via a tight-fitting cap with plastic electrode
holders filled with conductive electrolyte gel to improve contact quality.

All participants were readied for hd-tdcs before the baseline block. For the
groups receiving real hd-tdcs (left hemisphere PPC, n = 17; right hemisphere
PPC, n = 15), the current magnitude was set at 2 mA and stimulation was
administered for 15 min. Delivery of hd-tdcs started immediately after the
baseline block of trials. Participants sat quietly for the first 10 min of the
stimulation, while the last 5 min of stimulation overlapped with the early
portion of the learning block. Participants continued to perform the learning
trials uninterrupted after the stimulation ended; the entire task after the end
of stimulation took about 20 to 25 min. The same procedures were followed
for participants that received sham PPC stimulation (left hemisphere, n = 17;
right hemisphere, n = 15). However, for them, the current rose to 2 mA over
30 s and then dropped to zero over the next 30 s, thereby ensuring that they
felt the “tingling” sensation associated with the stimulation. Participants were
unaware of the group they were in, and reported no discomfort later.

Model Fitting. We fit the multirate learning model to the trial-by-trial
learning data separately for each participant in the four groups (real/sham
stimulation over left/right PPC). Fitting the model to individual participant
data was essential in this experiment because we could not assume uniform
effects of hd-tdcs across participants, and we wished to obtain unbiased
parameter estimates. The constraints on the parameters remained similar to
experiment 1 (As > Af and Bf > Bs). Further, for the first 40 trials of the after-
effects block, the error term was set to zero since there was no visual
feedback on these trials, and thus no visual error to (re)learn from. To better
ensure identification of least squared error and assess the sensitivity of the
fits to the initial conditions, we used 180 different starting value combina-
tions for the parameters. We found very consistent fits within the con-
strained parameter space. Mean parameter values for the various groups are
in SI Appendix, Table S1.

Experiment 3. Experiment 3 (n = 32) was designed to test whether gener-
alization could be impeded if the PPC was disrupted postlearning. The setup
and general task conditions remained same as earlier. Briefly, participants
made 10-cm-long reaches from a start position to a target in the straight-
ahead direction under continuous feedback of hand position. Participants
were randomly divided into three groups. Two of the three groups learned
to compensate a 30° counterclockwise rotation of the feedback cursor over
200 trials with their left arm. Participants in the third, “naïve” group learned
the rotation with their right arm for 40 trials. Participants in the first two
groups received real (n = 12) or sham (n = 12) cathodal hd-tdcs over PPC,
while the naïve group (n = 8) did not receive any stimulation. Following hd-
tdcs delivery, participants in the stimulation groups performed 40 trials with
their right arm to test for the effects of hd-tdcs on generalization from prior
left arm learning. The behavioral measure of interest again was direction er-
ror. Quantification of learning and generalization was similar to experiment 1.

hd-tdcs Protocol. The setup and procedures for hd-tdcs remained largely
identical to experiment 2. Stimulation was delivered in a 4 × 1 ring

arrangement over the P3 location with a current magnitude of 2 mA and
duration of 15 min. hd-tdcs started immediately after completion of the
learning block, and participants sat quietly during stimulation. For the
sham group, setup procedures remained the same, but the current rose to
2 mA over 30 s and then dropped to zero over the next 30 s. Participants
did not know which group they were in and reported no discomfort with
the hd-tdcs.

Control Experiment for Nonspecific hd-tdcs Effects. We recruited another
group of participants (n = 12) for a control experiment that involved delivery
of cathodal hd-tdcs over left M1. This was done to control for any potential
nonspecific effects of active hd-tdcs. This also allowed us to test whether M1
causally influences generalization. The current intensity and duration for
this group were also set at 2 mA and 15 min, respectively. The task for this
group of participants remained identical to the group that received hd-tdcs
over PPC. In other words, these participants also learned to compensate for a
30° counterclockwise visuomotor rotation for 200 trials with their left arm,
were administered the hd-tdcs postlearning, and were then tested for
generalization using their right arm (40 trials). Data from these participants
were analyzed along with those obtained from participants in experiment 3.

Data Removal. Trials on which participants failed to initiate a movement,
lifted the stylus off the digitizer leading to loss of data, or moved in a di-
rection drastically different from the target direction were excluded from the
analysis. Across all participants in the entire study, 1.1% of the trials
were removed.

Statistics. We typically used analysis of variance (ANOVA) to test for main or
interaction effects of various factors on the dependent kinematic variables of
interest (primarily the direction error). Assumptions of normality required for
ANOVA were tested using Shapiro–Wilk tests. In experiment 1, group and
trial set differences in learning were assessed by subjecting direction errors
to a two-way ANOVA. Generalization was analyzed statistically using an-
other two-way ANOVA with block (learning/generalization) and trial set as
factors. Early and late learning differences across various hd-tdcs groups of
experiments 2 and 3 were compared using one-way ANOVAs. One-way
ANOVA was also used for assessing generalization differences between
the groups of experiment 3. Tukey’s post hoc tests, which adjust for multiple
comparisons, were performed when main or interaction effects were sig-
nificant. Partial eta-squared (η2p) values were calculated for effect sizes.

In experiment 2, we also examined if the parameters derived from the
model fitting procedure (As, Af, Bs, and Bf) differed across the four hd-tdcs
groups (real/sham over left/right PPC) using the Kruskal–Wallis test. Post hoc
pairwise comparisons were done using the Wilcoxon rank-sum test corrected
for multiple comparisons via the Benjamini–Hochberg method. Specific
group differences were also confirmed using permutation tests (n = 10,000),
which evaluate the (null) hypothesis that the score for each participant is
independent of the group they are in. For this, the difference in mean pa-
rameter values of the groups being compared was used as the test statistic.
The proportion of times that the difference in means in the distribution
obtained from the permutation procedure exceeded the originally observed
difference was calculated in order to test the null hypothesis. The signifi-
cance threshold was set at 0.05 for all statistical tests.

Data Availability. Data supporting the findings of the study are available on
Figshare at https://figshare.com/articles/Kumar_et_al_2020_data/12416426.
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